
Instance Optimal Geometric Algorithms
Notes on Tim Roughgarden’s Beyond Worst-Case Analysis, Lecture 2

Kyle Clarkson

UBC Algorithms Reading Group - May 19th, 2020

1 / 28

Presentation Outline

I Typically we analyze an algorithm where its inputs are parameterized
only by their sizes.

I By parameterizing the input in more ways, the analysis of the
algorithm can be more informative.

2 / 28

Presentation Outline

I We will discuss the 2D Maxima problem, which is closely related to
the 2D Convex Hull problem. We analyze the Kirkpatrick-Seidel (KS)
algorithm in three ways to give the upper bounds:

- O(n log n) where n is the number of inputs (i.e. points in the plane),
- O(n log h) where h is the number of outputs (i.e. maximal points of

input), and

- O(min
S1,...Sk

{
∑k

i=1 |Si|log n
|Si|}) where S1, . . . Sk is a legal partition of the

input set.

I We also mention matching lower bounds for each analysis.

3 / 28

Presentation Outline

I We will discuss the 2D Maxima problem, which is closely related to
the 2D Convex Hull problem. We analyze the Kirkpatrick-Seidel (KS)
algorithm in three ways to give the upper bounds:

- O(n log n) where n is the number of inputs (i.e. points in the plane),

- O(n log h) where h is the number of outputs (i.e. maximal points of
input), and

- O(min
S1,...Sk

{
∑k

i=1 |Si|log n
|Si|}) where S1, . . . Sk is a legal partition of the

input set.

I We also mention matching lower bounds for each analysis.

3 / 28

Presentation Outline

I We will discuss the 2D Maxima problem, which is closely related to
the 2D Convex Hull problem. We analyze the Kirkpatrick-Seidel (KS)
algorithm in three ways to give the upper bounds:

- O(n log n) where n is the number of inputs (i.e. points in the plane),
- O(n log h) where h is the number of outputs (i.e. maximal points of

input), and

- O(min
S1,...Sk

{
∑k

i=1 |Si|log n
|Si|}) where S1, . . . Sk is a legal partition of the

input set.

I We also mention matching lower bounds for each analysis.

3 / 28

Presentation Outline

I We will discuss the 2D Maxima problem, which is closely related to
the 2D Convex Hull problem. We analyze the Kirkpatrick-Seidel (KS)
algorithm in three ways to give the upper bounds:

- O(n log n) where n is the number of inputs (i.e. points in the plane),
- O(n log h) where h is the number of outputs (i.e. maximal points of

input), and

- O(min
S1,...Sk

{
∑k

i=1 |Si|log n
|Si|}) where S1, . . . Sk is a legal partition of the

input set.

I We also mention matching lower bounds for each analysis.

3 / 28

Presentation Outline

I We will discuss the 2D Maxima problem, which is closely related to
the 2D Convex Hull problem. We analyze the Kirkpatrick-Seidel (KS)
algorithm in three ways to give the upper bounds:

- O(n log n) where n is the number of inputs (i.e. points in the plane),
- O(n log h) where h is the number of outputs (i.e. maximal points of

input), and

- O(min
S1,...Sk

{
∑k

i=1 |Si|log n
|Si|}) where S1, . . . Sk is a legal partition of the

input set.

I We also mention matching lower bounds for each analysis.

3 / 28

What is instance optimally?

I Suppose algorithms A and B solve the same problem - in what ways
can we say A is better than B? In what way can we say A is better
than any other algorithm that solves the problem?

I Typical Approach: For sufficiently large input sizes n, A is better than
B if cost(A) ≤ c · cost(B) for constant c.

I Another approach: if cost(X,Z) denotes is a measure of how long
algorithm X takes to solve problem instance Z then A is dominates B
if for all instances Z,

cost(A,Z) ≤ cost(B,Z)

I Problem - too strong: consider BogoSort and BubbleSort for Z being
sorted.

4 / 28

What is instance optimally?

I Suppose algorithms A and B solve the same problem - in what ways
can we say A is better than B? In what way can we say A is better
than any other algorithm that solves the problem?

I Typical Approach: For sufficiently large input sizes n, A is better than
B if cost(A) ≤ c · cost(B) for constant c.

I Another approach: if cost(X,Z) denotes is a measure of how long
algorithm X takes to solve problem instance Z then A is dominates B
if for all instances Z,

cost(A,Z) ≤ cost(B,Z)

I Problem - too strong: consider BogoSort and BubbleSort for Z being
sorted.

4 / 28

What is instance optimally?

I Suppose algorithms A and B solve the same problem - in what ways
can we say A is better than B? In what way can we say A is better
than any other algorithm that solves the problem?

I Typical Approach: For sufficiently large input sizes n, A is better than
B if cost(A) ≤ c · cost(B) for constant c.

I Another approach: if cost(X,Z) denotes is a measure of how long
algorithm X takes to solve problem instance Z then A is dominates B
if for all instances Z,

cost(A,Z) ≤ cost(B,Z)

I Problem - too strong: consider BogoSort and BubbleSort for Z being
sorted.

4 / 28

What is instance optimally?

I Suppose algorithms A and B solve the same problem - in what ways
can we say A is better than B? In what way can we say A is better
than any other algorithm that solves the problem?

I Typical Approach: For sufficiently large input sizes n, A is better than
B if cost(A) ≤ c · cost(B) for constant c.

I Another approach: if cost(X,Z) denotes is a measure of how long
algorithm X takes to solve problem instance Z then A is dominates B
if for all instances Z,

cost(A,Z) ≤ cost(B,Z)

I Problem - too strong: consider BogoSort and BubbleSort for Z being
sorted.

4 / 28

What is instance optimally?

I Instance Optimality: Let C be a set of algorithms we are interested in
comparing algorithm A against. Then we say that A is instance
optimal, wrt. approximation-constant c ≥ 1 and set C, if for all B ∈ C
and problem instances z,

cost(A,Z) ≤ c · cost(B,Z),

where c is independent of C and Z.

- If A is instance optimal, then there is no reason to use any other
algorithm for the problem!

5 / 28

What is instance optimally?

I Instance Optimality: Let C be a set of algorithms we are interested in
comparing algorithm A against. Then we say that A is instance
optimal, wrt. approximation-constant c ≥ 1 and set C, if for all B ∈ C
and problem instances z,

cost(A,Z) ≤ c · cost(B,Z),

where c is independent of C and Z.

- If A is instance optimal, then there is no reason to use any other
algorithm for the problem!

5 / 28

Showing instance optimality

I To show A is instance optimal, we need to show two things:

1. An upper bound on A for all instances Z (i.e. cost(A,Z) ≤ x), and
2. A matching lower bound, up to some constant, for all B ∈ C and Z.

(i.e. x ≤ c · cost(B,Z)).

I Note: The matching bound needs to hold for all instances Z. This
differs from worst-case analysis, where the bound only needs to match
for sufficiently large inputs (i.e. cost(A) ≤ c · cost(B) for n ≥ n0.)

6 / 28

Showing instance optimality

I To show A is instance optimal, we need to show two things:

1. An upper bound on A for all instances Z (i.e. cost(A,Z) ≤ x), and
2. A matching lower bound, up to some constant, for all B ∈ C and Z.

(i.e. x ≤ c · cost(B,Z)).

I Note: The matching bound needs to hold for all instances Z. This
differs from worst-case analysis, where the bound only needs to match
for sufficiently large inputs (i.e. cost(A) ≤ c · cost(B) for n ≥ n0.)

6 / 28

The 2DMaxima Problem

I Let p and q be points in the
plane. p is dominated by q if q
is bigger than p in both
coordinates (along x and y
axes.)

I A maximal point is a point not
dominate by any others.

I 2DMaxima Problem: Given
point set S, find all maximal
points of S.

7 / 28

The 2DMaxima Problem

I Let p and q be points in the
plane. p is dominated by q if q
is bigger than p in both
coordinates (along x and y
axes.)

I A maximal point is a point not
dominate by any others.

I 2DMaxima Problem: Given
point set S, find all maximal
points of S.

7 / 28

The Kirkpatrick-Seidel (KS) Algorithm for 2DMaxima

Input: A point set Q
Output: Maximal point set S

1. If |Q| ≤ 1 add Q to S, return.

2. Compute median x-coordinate
among points in Q; partition Q
into left and right halves Ql and
Qr.

3. Let q be the point with max.
y-coord. in Qr. Add q to output
set S.

4. Remove q and all points that it
dominates (in both Ql, Qr.)

5. Recurse on remaining Ql, Qr.

8 / 28

The Kirkpatrick-Seidel (KS) Algorithm for 2DMaxima

Input: A point set Q
Output: Maximal point set S

1. If |Q| ≤ 1 add Q to S, return.

2. Compute median x-coordinate
among points in Q; partition Q
into left and right halves Ql and
Qr.

3. Let q be the point with max.
y-coord. in Qr. Add q to output
set S.

4. Remove q and all points that it
dominates (in both Ql, Qr.)

5. Recurse on remaining Ql, Qr.

8 / 28

The Kirkpatrick-Seidel (KS) Algorithm for 2DMaxima

Input: A point set Q
Output: Maximal point set S

1. If |Q| ≤ 1 add Q to S, return.

2. Compute median x-coordinate
among points in Q; partition Q
into left and right halves Ql and
Qr.

3. Let q be the point with max.
y-coord. in Qr. Add q to output
set S.

4. Remove q and all points that it
dominates (in both Ql, Qr.)

5. Recurse on remaining Ql, Qr.

8 / 28

The Kirkpatrick-Seidel (KS) Algorithm for 2DMaxima

Input: A point set Q
Output: Maximal point set S

1. If |Q| ≤ 1 add Q to S, return.

2. Compute median x-coordinate
among points in Q; partition Q
into left and right halves Ql and
Qr.

3. Let q be the point with max.
y-coord. in Qr. Add q to output
set S.

4. Remove q and all points that it
dominates (in both Ql, Qr.)

5. Recurse on remaining Ql, Qr.

8 / 28

The Kirkpatrick-Seidel (KS) Algorithm for 2DMaxima

Input: A point set Q
Output: Maximal point set S

1. If |Q| ≤ 1 add Q to S, return.

2. Compute median x-coordinate
among points in Q; partition Q
into left and right halves Ql and
Qr.

3. Let q be the point with max.
y-coord. in Qr. Add q to output
set S.

4. Remove q and all points that it
dominates (in both Ql, Qr.)

5. Recurse on remaining Ql, Qr.

8 / 28

The Kirkpatrick-Seidel (KS) Algorithm for 2DMaxima

Input: A point set Q
Output: Maximal point set S

1. If |Q| ≤ 1 add Q to S, return.

2. Compute median x-coordinate
among points in Q; partition Q
into left and right halves Ql and
Qr.

3. Let q be the point with max.
y-coord. in Qr. Add q to output
set S.

4. Remove q and all points that it
dominates (in both Ql, Qr.)

5. Recurse on remaining Ql, Qr.

8 / 28

Correctness of KS

I Point q is maximal in the input Q: its x-coord. is larger than all
points in Ql and its y-coord. is larger than all points in Qr. Clearly,
removal of any points dominated by q is correct as well.

I Issue: During the execution, can a point that is not maximal in Q
become maximal by the removable of previous recursive calls?

I No, consider that maximal points from the recursive call on Qr are
maximal points of Q - let p be such a point added from the recursive
call.

- p is not dominated by q or any point in Ql (p has larger x-coord.)

I For maximal points from the recursive call on Ql, note that after
pruning, all points that remain in Ql must have larger y-coord. than q
(i.e. these points cannot be dominated by q.)

9 / 28

Correctness of KS

I Point q is maximal in the input Q: its x-coord. is larger than all
points in Ql and its y-coord. is larger than all points in Qr. Clearly,
removal of any points dominated by q is correct as well.

I Issue: During the execution, can a point that is not maximal in Q
become maximal by the removable of previous recursive calls?

I No, consider that maximal points from the recursive call on Qr are
maximal points of Q - let p be such a point added from the recursive
call.

- p is not dominated by q or any point in Ql (p has larger x-coord.)

I For maximal points from the recursive call on Ql, note that after
pruning, all points that remain in Ql must have larger y-coord. than q
(i.e. these points cannot be dominated by q.)

9 / 28

Correctness of KS

I Point q is maximal in the input Q: its x-coord. is larger than all
points in Ql and its y-coord. is larger than all points in Qr. Clearly,
removal of any points dominated by q is correct as well.

I Issue: During the execution, can a point that is not maximal in Q
become maximal by the removable of previous recursive calls?

I No, consider that maximal points from the recursive call on Qr are
maximal points of Q - let p be such a point added from the recursive
call.

- p is not dominated by q or any point in Ql (p has larger x-coord.)

I For maximal points from the recursive call on Ql, note that after
pruning, all points that remain in Ql must have larger y-coord. than q
(i.e. these points cannot be dominated by q.)

9 / 28

Runtime of KS

I Classic Divide-and-Conquer algorithm. For n points O(n) operations
are needed to compute median (Blum et al. 1973). Two recursive
calls are made. Thus the recurrence is:

T (n) ≤ 2T (n/2) + cn =⇒ T (n) ∈ O(nlogn)

I The KS algorithm is also Ω(nlogn) in the worst-case under a
comparison/decision tree model. Starting with n points, we need to
make Θ(nlogn) comparisons.

I Thus T (n) ∈ Θ(nlogn) - are we not done??

10 / 28

Runtime of KS

I Classic Divide-and-Conquer algorithm. For n points O(n) operations
are needed to compute median (Blum et al. 1973). Two recursive
calls are made. Thus the recurrence is:

T (n) ≤ 2T (n/2) + cn =⇒ T (n) ∈ O(nlogn)

I The KS algorithm is also Ω(nlogn) in the worst-case under a
comparison/decision tree model. Starting with n points, we need to
make Θ(nlogn) comparisons.

I Thus T (n) ∈ Θ(nlogn) - are we not done??

10 / 28

Runtime of KS

I Classic Divide-and-Conquer algorithm. For n points O(n) operations
are needed to compute median (Blum et al. 1973). Two recursive
calls are made. Thus the recurrence is:

T (n) ≤ 2T (n/2) + cn =⇒ T (n) ∈ O(nlogn)

I The KS algorithm is also Ω(nlogn) in the worst-case under a
comparison/decision tree model. Starting with n points, we need to
make Θ(nlogn) comparisons.

I Thus T (n) ∈ Θ(nlogn) - are we not done??

10 / 28

Output-Sensitive Analysis

I Some instances are easier than
other instances:

I O(n) to find median, O(n)
comparisons and deletions. Ql
and Qr are now empty. Thus
the algorithm (on this instance)
has linear runtime.

I What makes this instance easy?

11 / 28

Output-Sensitive Analysis

I Some instances are easier than
other instances:

I O(n) to find median, O(n)
comparisons and deletions. Ql
and Qr are now empty. Thus
the algorithm (on this instance)
has linear runtime.

I What makes this instance easy?

11 / 28

Output-Sensitive Analysis

I Some instances are easier than
other instances:

I O(n) to find median, O(n)
comparisons and deletions. Ql
and Qr are now empty. Thus
the algorithm (on this instance)
has linear runtime.

I What makes this instance easy?

11 / 28

KS is O(nlogh) Proof

I Input size does not cut it alone! Let’s parameterize the input by both
number of points n and number of maximal points (i.e. output size)
h.

I Claim: The KS algorithm runs in O(nlogh). Proof:

I Define our recurrence as T (n, h). Let hl and hr denote the number of
maximal points in the left and right partitions (before removal). Thus
we have,

T (n, h) ≤ max
hl+hr=h

{T (
n

2
, hl) + T (

n

2
, hr)}+ cn

where hl, hr < h. We proceed by induction.

12 / 28

KS is O(nlogh) Proof

I Input size does not cut it alone! Let’s parameterize the input by both
number of points n and number of maximal points (i.e. output size)
h.

I Claim: The KS algorithm runs in O(nlogh). Proof:
I Define our recurrence as T (n, h). Let hl and hr denote the number of

maximal points in the left and right partitions (before removal). Thus
we have,

T (n, h) ≤ max
hl+hr=h

{T (
n

2
, hl) + T (

n

2
, hr)}+ cn

where hl, hr < h. We proceed by induction.

12 / 28

Proof Continued

T (n, h) ≤ max
hl+hr=h

{T (
n

2
, hl) + T (

n

2
, hr)}+ cn

≤ max
hl+hr=h

{cn
2
log(hl) + c

n

2
log(hr)}+ cn

≤ cn+
1

2
cn max

hl+hr=h
{log(hlhr)}

≤ cn+
1

2
cn
(
log
(h

2

)2)
≤ cnlog(h)

13 / 28

Proof Continued

T (n, h) ≤ max
hl+hr=h

{T (
n

2
, hl) + T (

n

2
, hr)}+ cn

≤ max
hl+hr=h

{cn
2
log(hl) + c

n

2
log(hr)}+ cn

≤ cn+
1

2
cn max

hl+hr=h
{log(hlhr)}

≤ cn+
1

2
cn
(
log
(h

2

)2)
≤ cnlog(h)

13 / 28

Proof Continued

T (n, h) ≤ max
hl+hr=h

{T (
n

2
, hl) + T (

n

2
, hr)}+ cn

≤ max
hl+hr=h

{cn
2
log(hl) + c

n

2
log(hr)}+ cn

≤ cn+
1

2
cn max

hl+hr=h
{log(hlhr)}

≤ cn+
1

2
cn
(
log
(h

2

)2)
≤ cnlog(h)

13 / 28

Proof Continued

T (n, h) ≤ max
hl+hr=h

{T (
n

2
, hl) + T (

n

2
, hr)}+ cn

≤ max
hl+hr=h

{cn
2
log(hl) + c

n

2
log(hr)}+ cn

≤ cn+
1

2
cn max

hl+hr=h
{log(hlhr)}

≤ cn+
1

2
cn
(
log
(h

2

)2)

≤ cnlog(h)

13 / 28

Proof Continued

T (n, h) ≤ max
hl+hr=h

{T (
n

2
, hl) + T (

n

2
, hr)}+ cn

≤ max
hl+hr=h

{cn
2
log(hl) + c

n

2
log(hr)}+ cn

≤ cn+
1

2
cn max

hl+hr=h
{log(hlhr)}

≤ cn+
1

2
cn
(
log
(h

2

)2)
≤ cnlog(h)

13 / 28

A more Fine-Grained Analysis

I For h ∈ O(1), the runtime of KS is linear. For h ∈ O(n), the runtime
is nlog(n).

I But even for many h in between the algorithm preforms quite-well!

I Why? Many points are dominated by q and removed, resulting in
fewer points for recursive calls.

I To explore this more, we need to parameterize the input even further.

14 / 28

A more Fine-Grained Analysis

I For h ∈ O(1), the runtime of KS is linear. For h ∈ O(n), the runtime
is nlog(n).

I But even for many h in between the algorithm preforms quite-well!

I Why? Many points are dominated by q and removed, resulting in
fewer points for recursive calls.

I To explore this more, we need to parameterize the input even further.

14 / 28

Legal Partitions

I To show the instance optimality of the
KS algorithm, we use the following
parameterization. For partition
S1, · · · , Sk of input set S, the partition
{Si} is a legal partition/set if:

1. Si contain a single point, or
2. Si is contained in the interior of an

axis-aligned box Bi and is located
below the staircase of S.

I Intuition: For case 2) if the top-right
corner of Bi is a point of the set;
choosing this point in KS will remove
the entirety of Si.

S1

S2

S3

S4
S6

S5

B4 B5 B6

15 / 28

Legal Partitions

I To show the instance optimality of the
KS algorithm, we use the following
parameterization. For partition
S1, · · · , Sk of input set S, the partition
{Si} is a legal partition/set if:

1. Si contain a single point, or
2. Si is contained in the interior of an

axis-aligned box Bi and is located
below the staircase of S.

I Intuition: For case 2) if the top-right
corner of Bi is a point of the set;
choosing this point in KS will remove
the entirety of Si.

S1

S2

S3

S4
S6

S5

B4 B5 B6

15 / 28

Legal Partitions

I To show the instance optimality of the
KS algorithm, we use the following
parameterization. For partition
S1, · · · , Sk of input set S, the partition
{Si} is a legal partition/set if:

1. Si contain a single point, or
2. Si is contained in the interior of an

axis-aligned box Bi and is located
below the staircase of S.

I Intuition: For case 2) if the top-right
corner of Bi is a point of the set;
choosing this point in KS will remove
the entirety of Si.

S1

S2

S3

S4
S6

S5

B4 B5 B6

15 / 28

Instance Optimal Upper Bound on KS Algorithm

I For a point set S partitioned into k legal sets, the runtime of the KS
algorithm is:

O

(
k∑
i=1

|Si|log
n

|Si|

)

I What this says: there is a relationship between legal partitions and
the rate at which points are removed.

16 / 28

Instance Optimal Upper Bound on KS Algorithm Proof

I Proof: Analyze the recurrence tree. The amount of work done at
each level is linear in the number of points remaining at that level.
We will bound how much Si contributes to the number of points
remaining at level j.

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Proceeding with the claim, across all levels,
Si contributes:

≤
dlog2(n)e∑
j=0

min{|Si|, 2n/2j}

≤
(
|Si|+ · · ·+ |Si|︸ ︷︷ ︸
log(n/|Si|)+1

+
|Si|
1

+
|Si|
21

+
|Si|
22

+ · · ·
)

17 / 28

Instance Optimal Upper Bound on KS Algorithm Proof

I Proof: Analyze the recurrence tree. The amount of work done at
each level is linear in the number of points remaining at that level.
We will bound how much Si contributes to the number of points
remaining at level j.

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Proceeding with the claim, across all levels,
Si contributes:

≤
dlog2(n)e∑
j=0

min{|Si|, 2n/2j}

≤
(
|Si|+ · · ·+ |Si|︸ ︷︷ ︸
log(n/|Si|)+1

+
|Si|
1

+
|Si|
21

+
|Si|
22

+ · · ·
)

17 / 28

Instance Optimal Upper Bound on KS Algorithm Proof

I Proof: Analyze the recurrence tree. The amount of work done at
each level is linear in the number of points remaining at that level.
We will bound how much Si contributes to the number of points
remaining at level j.

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Proceeding with the claim, across all levels,
Si contributes:

≤
dlog2(n)e∑
j=0

min{|Si|, 2n/2j}

≤
(
|Si|+ · · ·+ |Si|︸ ︷︷ ︸
log(n/|Si|)+1

+
|Si|
1

+
|Si|
21

+
|Si|
22

+ · · ·
)

17 / 28

Instance Optimal Upper Bound on KS Algorithm Proof

I Proof: Analyze the recurrence tree. The amount of work done at
each level is linear in the number of points remaining at that level.
We will bound how much Si contributes to the number of points
remaining at level j.

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Proceeding with the claim, across all levels,
Si contributes:

≤
dlog2(n)e∑
j=0

min{|Si|, 2n/2j}

≤
(
|Si|+ · · ·+ |Si|︸ ︷︷ ︸
log(n/|Si|)+1

+
|Si|
1

+
|Si|
21

+
|Si|
22

+ · · ·
)

17 / 28

Proof Continued

≤ |Si|
(
log(n/|Si|) + 3

)

I which is in O(|Si|log(n/|Si|)). As each Si is a partition of the input

set, each of the k partitions contributes O

(∑k
i=1 |Si|log

n
|Si|

)
to the

algorithm.

18 / 28

Proof of Claim

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Consider recursion level j:

I Recall that Si is contained in a box
Bi. Any points of Si not yet
removed must be contained in
between two previously
identified maximal points (along
x-axis)

I All points in Si have x-coord. less
than b’s x-coord as b is maximal.

I Bi (and thus Si) is below the
staircase of S - as a is maximal, all
points of Si have y-coord less than
a.

19 / 28

Proof of Claim

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Consider recursion level j:

I Recall that Si is contained in a box
Bi. Any points of Si not yet
removed must be contained in
between two previously
identified maximal points (along
x-axis)

I All points in Si have x-coord. less
than b’s x-coord as b is maximal.

I Bi (and thus Si) is below the
staircase of S - as a is maximal, all
points of Si have y-coord less than
a.

19 / 28

Proof of Claim

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Consider recursion level j:

I Recall that Si is contained in a box
Bi. Any points of Si not yet
removed must be contained in
between two previously
identified maximal points (along
x-axis)

I All points in Si have x-coord. less
than b’s x-coord as b is maximal.

I Bi (and thus Si) is below the
staircase of S - as a is maximal, all
points of Si have y-coord less than
a.

19 / 28

Proof of Claim

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Consider recursion level j:

I Recall that Si is contained in a box
Bi. Any points of Si not yet
removed must be contained in
between two previously
identified maximal points (along
x-axis)

I All points in Si have x-coord. less
than b’s x-coord as b is maximal.

I Bi (and thus Si) is below the
staircase of S - as a is maximal, all
points of Si have y-coord less than
a.

19 / 28

Proof of Claim Continued

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Consider recursion level j:

I For every pair of adjacent maxima found so far (along x-axis) at
level j, there are at most 2n/2j remaining points in between
them.

I At level j we’ve partitioned the point set into at most 2j (non-empty)
buckets. In each bucket, there are at most n/2j points.

I Each recursive call identifies a maximal point. Once identified and
removed, at most 2n/2j points can remain between consecutive
buckets.

20 / 28

Proof of Claim Continued

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Consider recursion level j:

I For every pair of adjacent maxima found so far (along x-axis) at
level j, there are at most 2n/2j remaining points in between
them.

I At level j we’ve partitioned the point set into at most 2j (non-empty)
buckets. In each bucket, there are at most n/2j points.

I Each recursive call identifies a maximal point. Once identified and
removed, at most 2n/2j points can remain between consecutive
buckets.

· · · · · ·

20 / 28

Proof of Claim Continued

I Claim: The number of points in Si not yet removed at level j is at
most min{|Si|, 2n/2j}. Consider recursion level j:

I For every pair of adjacent maxima found so far (along x-axis) at
level j, there are at most 2n/2j remaining points in between
them.

I At level j we’ve partitioned the point set into at most 2j (non-empty)
buckets. In each bucket, there are at most n/2j points.

I Each recursive call identifies a maximal point. Once identified and
removed, at most 2n/2j points can remain between consecutive
buckets.

· · · · · ·

20 / 28

But is there more to this?

I The proof of the claim only required the sets Si to be legal sets.

I Thus the overall upper bound will hold for all legal partitions! That is,

O

(
min

legal{Si}

k∑
i=1

|Si|log
n

|Si|

)

(1)

I Note: When each Si is a singleton, we have the O(nlogn) bound,
and,

I when each maximal point is a singleton, and non-maximal points are
in sets below and left of each maximal point, we have the O(nlogh)
bound.

21 / 28

But is there more to this?

I The proof of the claim only required the sets Si to be legal sets.

I Thus the overall upper bound will hold for all legal partitions! That is,

O

(
min

legal{Si}

k∑
i=1

|Si|log
n

|Si|

)
(1)

I Note: When each Si is a singleton, we have the O(nlogn) bound,
and,

I when each maximal point is a singleton, and non-maximal points are
in sets below and left of each maximal point, we have the O(nlogh)
bound.

21 / 28

But is there more to this?

I The proof of the claim only required the sets Si to be legal sets.

I Thus the overall upper bound will hold for all legal partitions! That is,

O

(
min

legal{Si}

k∑
i=1

|Si|log
n

|Si|

)
(1)

I Note: When each Si is a singleton, we have the O(nlogn) bound,
and,

I when each maximal point is a singleton, and non-maximal points are
in sets below and left of each maximal point, we have the O(nlogh)
bound.

21 / 28

A Matching Lower Bound for Instance Optimality?

I We’ve given a good upper bound on the runtime of the KS algorithm
in (1), but for all problem instances, will KS preform better than any
other algorithm?

I No, because of silly algorithms.

I Consider, the KS with Extra Steps* algorithm:
Input: A point set Q
Output: Maximal point set S

1. Check if Q is instance Z
2. If so, output hard-coded maximal point set of Z
3. If not, output KS(Q).

I But, ”annoying counterexamples are not a good reason to abandon
the quest for an interesting theorem” - Tim Roughgarden.

22 / 28

A Matching Lower Bound for Instance Optimality?

I We’ve given a good upper bound on the runtime of the KS algorithm
in (1), but for all problem instances, will KS preform better than any
other algorithm?

I No, because of silly algorithms.

I Consider, the KS with Extra Steps* algorithm:
Input: A point set Q
Output: Maximal point set S

1. Check if Q is instance Z
2. If so, output hard-coded maximal point set of Z
3. If not, output KS(Q).

I But, ”annoying counterexamples are not a good reason to abandon
the quest for an interesting theorem” - Tim Roughgarden.

22 / 28

A Matching Lower Bound for Instance Optimality?

I We’ve given a good upper bound on the runtime of the KS algorithm
in (1), but for all problem instances, will KS preform better than any
other algorithm?

I No, because of silly algorithms.

I Consider, the KS with Extra Steps* algorithm:
Input: A point set Q
Output: Maximal point set S

1. Check if Q is instance Z
2. If so, output hard-coded maximal point set of Z
3. If not, output KS(Q).

I But, ”annoying counterexamples are not a good reason to abandon
the quest for an interesting theorem” - Tim Roughgarden.

22 / 28

A Matching Lower Bound for Instance Optimality?

I We’ve given a good upper bound on the runtime of the KS algorithm
in (1), but for all problem instances, will KS preform better than any
other algorithm?

I No, because of silly algorithms.

I Consider, the KS with Extra Steps* algorithm:
Input: A point set Q
Output: Maximal point set S

1. Check if Q is instance Z
2. If so, output hard-coded maximal point set of Z
3. If not, output KS(Q).

I But, ”annoying counterexamples are not a good reason to abandon
the quest for an interesting theorem” - Tim Roughgarden.

22 / 28

What to do?

I There are two approaches:

1. Restrict algorithms B to be order-oblivious; the input set Q must first
be sorted to compare it against hard coded Z.

2. Redefine cost(B,Z); compare the KS algorithm against the
performance of B on permutations of Z - take the max or average of
this cost.

23 / 28

What to do?

I There are two approaches:

1. Restrict algorithms B to be order-oblivious; the input set Q must first
be sorted to compare it against hard coded Z.

2. Redefine cost(B,Z); compare the KS algorithm against the
performance of B on permutations of Z - take the max or average of
this cost.

23 / 28

A Matching Lower Bound for Instance Optimality

I Let Cost(B,Z) = max
π
{cost(B, π(Z))} where π(Z) denotes the

ordering the point set Z is presented to B, according to an ordering π.

I Then for every point set S and every algorithm B,

Cost(B,S) ∈ Ω
(

min
legal{Si}

k∑
i=1

|Si|log
n

|Si|

)
(2)

I Proof outline: For any correct algorithm A with input S, there exists

a permutation of S on which at least Ω
(

min
legal{Si}

∑k
i=1 |Si|log

n
|Si|

)
comparisons are made.

24 / 28

A Matching Lower Bound for Instance Optimality

I Let Cost(B,Z) = max
π
{cost(B, π(Z))} where π(Z) denotes the

ordering the point set Z is presented to B, according to an ordering π.

I Then for every point set S and every algorithm B,

Cost(B,S) ∈ Ω
(

min
legal{Si}

k∑
i=1

|Si|log
n

|Si|

)
(2)

I Proof outline: For any correct algorithm A with input S, there exists

a permutation of S on which at least Ω
(

min
legal{Si}

∑k
i=1 |Si|log

n
|Si|

)
comparisons are made.

24 / 28

A Matching Lower Bound for Instance Optimality

I Let Cost(B,Z) = max
π
{cost(B, π(Z))} where π(Z) denotes the

ordering the point set Z is presented to B, according to an ordering π.

I Then for every point set S and every algorithm B,

Cost(B,S) ∈ Ω
(

min
legal{Si}

k∑
i=1

|Si|log
n

|Si|

)
(2)

I Proof outline: For any correct algorithm A with input S, there exists

a permutation of S on which at least Ω
(

min
legal{Si}

∑k
i=1 |Si|log

n
|Si|

)
comparisons are made.

24 / 28

Proof Outline Continued

I A k-d tree (k = 2) of axis-aligned boxes is generated - the root is the
entire plane, internal nodes are regions (boxes) that are across the
staircase of S, and leaf nodes are boxes strictly below the staircase or
singletons.

I Maintain a node (box) Bp for each point p - only when p is a leaf
node is the algorithm certain of p’s exact position within Bp.

I An adversary can simulate running A on S and see how permuting
the order in which points of S are considered will hide maximal
points, requiring more comparisons.

I Let D be the sum of the depths of boxes Bp for each p ∈ S and T be
the number of comparisons made by A. It is shown that T ∈ Ω(D),
and that D is of order min

legal{Si}

∑k
i=1 |Si|log

n
|Si| .

25 / 28

Proof Outline Continued

I A k-d tree (k = 2) of axis-aligned boxes is generated - the root is the
entire plane, internal nodes are regions (boxes) that are across the
staircase of S, and leaf nodes are boxes strictly below the staircase or
singletons.

I Maintain a node (box) Bp for each point p - only when p is a leaf
node is the algorithm certain of p’s exact position within Bp.

I An adversary can simulate running A on S and see how permuting
the order in which points of S are considered will hide maximal
points, requiring more comparisons.

I Let D be the sum of the depths of boxes Bp for each p ∈ S and T be
the number of comparisons made by A. It is shown that T ∈ Ω(D),
and that D is of order min

legal{Si}

∑k
i=1 |Si|log

n
|Si| .

25 / 28

Proof Outline Continued

I A k-d tree (k = 2) of axis-aligned boxes is generated - the root is the
entire plane, internal nodes are regions (boxes) that are across the
staircase of S, and leaf nodes are boxes strictly below the staircase or
singletons.

I Maintain a node (box) Bp for each point p - only when p is a leaf
node is the algorithm certain of p’s exact position within Bp.

I An adversary can simulate running A on S and see how permuting
the order in which points of S are considered will hide maximal
points, requiring more comparisons.

I Let D be the sum of the depths of boxes Bp for each p ∈ S and T be
the number of comparisons made by A. It is shown that T ∈ Ω(D),
and that D is of order min

legal{Si}

∑k
i=1 |Si|log

n
|Si| .

25 / 28

Proof Outline Continued

I A k-d tree (k = 2) of axis-aligned boxes is generated - the root is the
entire plane, internal nodes are regions (boxes) that are across the
staircase of S, and leaf nodes are boxes strictly below the staircase or
singletons.

I Maintain a node (box) Bp for each point p - only when p is a leaf
node is the algorithm certain of p’s exact position within Bp.

I An adversary can simulate running A on S and see how permuting
the order in which points of S are considered will hide maximal
points, requiring more comparisons.

I Let D be the sum of the depths of boxes Bp for each p ∈ S and T be
the number of comparisons made by A. It is shown that T ∈ Ω(D),
and that D is of order min

legal{Si}

∑k
i=1 |Si|log

n
|Si| .

25 / 28

Conclusions and Take-Away Points

I By parameterizing our input in terms of more than just the input size,
we can give a more descriptive upper bound on runtimes.

I For KS algorithm on the 2DMaxima problem, we saw how describing
the input in terms of the both the output set size h and legal
partitions of the input gave more descriptive runtime performances
than when only considering input size.

I This was the first result of the paper Afshani, Barbay, and Chan, which
can be extended to the 3DMaxima problem and 2D and 3D Convex
Hull problem.

I The KS algorithm for 2DMaxima is instance optimal when compared
against algorithms that do not ”memorize” solution for some inputs.

26 / 28

Conclusions and Take-Away Points

I By parameterizing our input in terms of more than just the input size,
we can give a more descriptive upper bound on runtimes.

I For KS algorithm on the 2DMaxima problem, we saw how describing
the input in terms of the both the output set size h and legal
partitions of the input gave more descriptive runtime performances
than when only considering input size.
I This was the first result of the paper Afshani, Barbay, and Chan, which

can be extended to the 3DMaxima problem and 2D and 3D Convex
Hull problem.

I The KS algorithm for 2DMaxima is instance optimal when compared
against algorithms that do not ”memorize” solution for some inputs.

26 / 28

Conclusions and Take-Away Points

I By parameterizing our input in terms of more than just the input size,
we can give a more descriptive upper bound on runtimes.

I For KS algorithm on the 2DMaxima problem, we saw how describing
the input in terms of the both the output set size h and legal
partitions of the input gave more descriptive runtime performances
than when only considering input size.
I This was the first result of the paper Afshani, Barbay, and Chan, which

can be extended to the 3DMaxima problem and 2D and 3D Convex
Hull problem.

I The KS algorithm for 2DMaxima is instance optimal when compared
against algorithms that do not ”memorize” solution for some inputs.

26 / 28

Conclusions and Take-Away Points

I Instance optimality is very strong, and seems problem specific.
I For 2DMaxima, this entropy-like measure of the point set was the

bound reached by the KS algorithm - what is the corresponding
measure for other problems?

I Instance optimality may not exist for all problems - the best algorithm
may rely on the input domain.

I Even if instance optimaility may exist, a matching lower bound needs
to be shown on an input-by-input basis. If lower bound proof
techniques in the computational model used are not well known, it is
difficult to prove such results.

27 / 28

Conclusions and Take-Away Points

I Instance optimality is very strong, and seems problem specific.
I For 2DMaxima, this entropy-like measure of the point set was the

bound reached by the KS algorithm - what is the corresponding
measure for other problems?

I Instance optimality may not exist for all problems - the best algorithm
may rely on the input domain.

I Even if instance optimaility may exist, a matching lower bound needs
to be shown on an input-by-input basis. If lower bound proof
techniques in the computational model used are not well known, it is
difficult to prove such results.

27 / 28

Conclusions and Take-Away Points

I Instance optimality is very strong, and seems problem specific.
I For 2DMaxima, this entropy-like measure of the point set was the

bound reached by the KS algorithm - what is the corresponding
measure for other problems?

I Instance optimality may not exist for all problems - the best algorithm
may rely on the input domain.

I Even if instance optimaility may exist, a matching lower bound needs
to be shown on an input-by-input basis. If lower bound proof
techniques in the computational model used are not well known, it is
difficult to prove such results.

27 / 28

Conclusions and Take-Away Points

I Thank you for listening!

I Next week: Online Paging and Resource Augmentation

28 / 28

	Section 1

